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Dynamics of solitary blood waves in arteries with prostheses

S. Noubissie and P. Woafo
Laboratoire de Mecanique, Faculte des Sciences, Universite de Yaounde I, Boıˆte Postale 812 Yaounde, Cameroon

~Received 7 February 2001; revised manuscript received 20 September 2002; published 28 April 2003!

We analyze the behavior of blood waves interacting with a prosthesis following the Yomosa nonlinear wave
theory extended to include the spatial variation of the arterial radius and wall rigidity. When the prosthesis is
short or when its characteristics are close to those of the host artery, the amplitude of the blood solitary wave
increases just proximal to the prosthesis and then decreases to a magnitude smaller than the normal value in a
healthy vessel. In the presence of an extended prosthesis, we derive the reflection and transmission coefficients
at the interfaces, and we thereby obtain the optimal characteristics for an ideal prosthesis. Our results agree
qualitatively with known experimental and numerical studies.
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I. INTRODUCTION

Vascular diseases, in particular those of the arterial ty
constitute one of the major causes of mortality in the wor
Among these diseases, the most frequent are stenosis,
riosclerosis, and aneurysm. The major effects of these
eases on blood vessels are the hardening, the softening
constriction, or the enlargement of the vessel walls. Th
changes lead to serious circulatory problems with con
quences for vital organs, particularly the brain, the heart,
the kidneys@1–3#.

When the diseases are still mild, antibiotic treatme
sometimes lead to recovery. In severe cases, cardiovas
surgeons remove the damaged area of the vessel. Then
suture the ends of the vessel when the damaged area i
too long or insert a prosthesis if suturing is not possible.
both cases, the mechanical, geometrical, and physical p
erties of the resulting vessel present an abrupt or a prog
sive discontinuity. The following questions are therefore
teresting. How does the small perturbation of the prosth
affect the wave pulse? What are the reflection and trans
sion coefficients for an extended prosthesis? Answers
help to derive the characteristics of an ideal prosthesis all
ing pulsatile blood flow without reflection.

To shed some light on these questions, we use the no
ear wave theory, which, since the pioneering works of Ha
imuze@4# and Yomosa@5#, has been developed substantia
@6–13#. The solitary-wave model gives a plausible explan
tion for the peaking and steepening of pulsatile waves
arteries.

In Sec. II, we first analyze the flow dynamics interacti
with a short prosthesis or a prosthesis with mechanical
geometrical characteristics close to those of the host ar
In Sec. III, we consider an extended prosthesis, derive
coefficients of reflection and transmission, and, from th
coefficients, obtain the optimal characteristics of a prosth
giving perfect transmission at the interfaces. We present
conclusions in Sec. IV.

II. EFFECTS OF PROSTHESES ACTING LIKE
SMALL PERTURBATIONS

A. The model

Before analyzing the effects of a prosthesis acting lik
small perturbation, we recall some fundamentals of the bl
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flow in arteries and point out some particular facts related
the soliton theory. We assume the blood to be incompress
and inviscid. The arteries are conical tubes with a nonlin
stress-strain relation. The arterial radius and wall rigid
vary slowly along the tube. The general dynamics describ
the blood flow in arteries obeys three laws—the equilibria
momenta and forces, the conservation of mass, and f
balance for radial motion of the elastic wall:

]v
]t

1n
]n

]z
52

1

r

]p

]z
, ~1a!

]S

]t
1

]~nS!

]z
50, ~1b!

r0h

2pR0

]2~S2S0!

]t2 5p2
h0R0

R2 s8, ~1c!

with

S2S05pR22pR0
2'2pR0~R2R0!, p5P2Pe ,

g5
~R2R0!

R0
, s85gE~11ag!,

wheret is the time andz is the coordinate along the propa
gation axis. The dynamical quantities describing the flow
the longitudinal flow velocityv(z,t), the fluid pressure
P(z,t), and the cross-sectional areaS(z,t) of the tube~or the
radius R(z,t) or the arterial deformationg!. Other param-
eters are the stress extending in the tangential directions8,
the pressurePe outside the tube, the densityr of the fluid,
the wall’s densityr0 , Young’s modulusE, the equilibrium
radiusR0 , the nonlinear coefficient of elasticitya, the thick-
nessh contributing to the elastic deformation, and the eq
librium thicknessh0 .

In experiments, the equilibrium radiusR0 and Young’s
modulusE vary along the artery@14#. The radius varies like
a decreasing exponential in space (R05R00e

2mz, wherem is
a positive factor andR00 the reference radius! andE follows
an increasing exponential law@6–8,14#. Assuming weak ex-
ponential laws, the radius is approximately
©2003 The American Physical Society11-1
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R~z,t !5R00~12mz!~11g!. ~2a!

The linear approximation of Young’s modulus is

E~z!5E0~11lz!, ~2b!

with E0 being a reference value andl a positive coefficient.
For mathematical purposes, we assume that the valuesm
andl are small enough and appear at the order«5/2, where«
is a perturbation parameter. Typical data for the physical
geometrical parameters taken from Ref.@5# for the thoracic
aorta are

R0050.5 cm, h050.12 R00, E055.493106 dyn/cm2,

and for the femoral artery

R0050.15 cm, h050.12 R00, E0514.13106 dyn/cm2,

with the following for both:

r051.05 g/cm3

and

r051.06 g/cm3.

The quantitiesm andl reported in Refs.@6# and@7# vary
from 0.01 to 0.05 cm21 and 0.01 to 0.04 cm21, respectively.

Let us discuss the limitations and novelties of our mod
The two main limitations are the one dimensionality and
inviscid character of the blood. The one dimensionality
the model means that the blood wave components~pressure,
velocity, and cross-sectional area! depend only on time and
axial coordinatez and not on the transverse and radial co
dinates. Moreover, we neglect the transverse componen
the velocity. Despite these limitations, this simplified mod
reproduces many features of natural pulses such as gr
and decay of the pulse wave components~see Refs.@4–7#!.
We also assume that the viscosity effects are negligible. T
assumption is only valid for large arteries with a diameter
about 1 cm. However, taking into account viscosity effe
modifies the resulting Korteveg–de Vries~KdV! equation by
an additive term associated with dissipation@9# and the
qualitative effects of the prosthesis will be the same, at le
for our simplified model.

The novelties of the model include a nonlinear stre
strain relation that seems to be more realistic than the u
linear elastic relation@5,8#. Unlike other models, which as
sume the pressurep to be a known function of time~gener-
ally sinusoidal!, we consider it as a spatiotemporal dynam
cal quantity to be derived. In fact, when the heart sends
initial blood pulse to the arterial tree, all pulse componen
including pressure, vary in time and space as they propag
A third point is the spatial variation of the radius an
Young’s modulus as given by Eq.~2!, which approximate
experimental facts@14#.

We first consider the effects of the prosthesis when t
weakly perturb the flow dynamics, e.g., when the length
the prosthesis is comparable to that of the pulse wave le
or when for a large prosthesis the mismatch between its c
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acteristics and those of the host artery is not large. We t
assume that in the presence of the prosthesis, the radius
the rigidity vary locally byf R,E(z), so that

R~z!5R00@11«5/2FR~z!1« f R~z!#~11g! ~3a!

and

E~z!5E0@11«5/2FE~z!1« f E~z!#, ~3b!

whereFR(z)52m8z andFE(z)5l8z ~assuming thatm and
l have formsm5«5/2m8 andl5«5/2l8). Figure 1 shows the
geometry of the artery with prosthesis. We define the fu
tions f R and f E as

f R,E~z!5a1@ tanha2~z2z00!2tanha2~z2z10!#, ~4!

wherea1 and a2 measure, respectively, the amplitude a
the gradient scales of the perturbation. Asa2 increases, the
transition region diminishes, leading to an abrupt pertur
tion with a rectangular shape.z00 andz10 are the locations
of the sutures at both ends of the prosthesis.

B. Derivation of the perturbed KdV equation

Following the mathematical procedure of Ref.@5#, we set

n85«n1~j,t!1«2n2~j,t!, ~5a!

p85«p1~j,t!1«2p2~j,t!, ~5b!

s8511«s1~j,t!1«2s2~j,t!, ~5c!

wherej5«1/2(z82t8) andt5«3/2t8, with the dimensionless
quantities

n5c0n8, p5p0p8, t5T0t8, z5L0z8, S5S0s8,

S05pR0
2, c05L0 /T0 , L05~R00h0r0/2r!1/2,

T05~r0R00
2 h0 /E0!1/2,

and

p05h0E0/2R00.

FIG. 1. Geometry of the artery with prosthesis.
1-2
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FIG. 2. Spatial variations of
the amplitude of the arterial veloc
ity wave for different values ofa1

with z108 2z008 55.
ra

on

nt

ita

i

of
e

cit

as-
f
od

of
s in

kal

d

t
as

ice

an
n
oral

on-

is
e 2

ct-

en-
or-
Inserting the transformations~5! into the resulting nondi-
mensional dynamical equations and after some algeb
transformations, we find that the first componentv1 of the
velocity wave obeys the following perturbed KdV equati
~see the Appendix!:

]n1

]t
1kn1

]n1

]j
1

1

2

]3n1

]j3 2
1

2
f 1~j,t!

]n1

]j
1

1

2
f 2~j,t!

]n1

]j

50, ~6!

with coefficients k5 1
2 (a11), f 1(j,t)5 f R(j,t)2m18t

and f 2(j,t)5 f E(j,t)1l18t.
Using the transformationst52T and n152@6/(a

11)#V1 , we finally obtain the equation

]V1

]T
26V1

]V1

]j
1

]3V1

]j3 2 f 1~j,T!
]V1

]j
1 f 2~j,T!

]V1

]j
50.

~7!

We can derive similar equations for the first compone
of the dimensionless pressurep1 and the sections1 of the
arterial wall. Thus the results we obtain below are qual
tively valid for the pressure and wall deformation.

C. Numerical results and comparison

In the absence of the termsf 1(j,t) and f 2(j,t), the so-
lution of the KdV equation~7! is

V152a0 sech2@a0
1/2~j24a0T!#, ~8!

wherea0 is the amplitude of the wave. Equation~8! implies
that the blood wave amplitude remains constant during
propagation. In fact, it does not. Experimental measures@1#
of the pulse wave changes at five sites of the artery tree
dog—ascending, thoracic, abdominal, femoral, and saph
ous arteries—revealed that the amplitude of the velo
04191
ic

s

-

ts

a
n-
y

wave v decreases continuously as one moves from the
cending to the saphenous arteries~see, for instance, Fig. 1 o
Ref. @5#!. This behavior can explain the scattering of blo
waves at the arterial branchings, but the spatial variation
the vessel characteristics also plays an important role, a
Fig. 2 ~with a150).

We integrate the perturbed KdV equation~7! numerically
using the finite difference method of Zabusky and Krus
@15# under periodic conditions with stepsDT5531023 and
Dj50.1 over a lengthLj5200.

We launch an initial solitary wave of the unperturbe
KdV equation of the form of Eq.~8! at a distancez8540
from the leading edge of the prosthesis, witha050.5, a28
5a2L050.045, l181m1850.138, and«50.2. The param-
eters of the thoracic aorta givea51.95. The constraint tha
our dimensional physical quantities should be as close
possible to those present in living bodies dictates our cho
of the values given above~in particularl181m18 , a0 and«!.
Indeed witha050.5, a reverse transformation leads to
amplitudevmax5114 cm/s for the velocity wave that lies i
the range of 80–140 cm/s observed in thoracic and fem
arteries. The corresponding wave width isLw50.39 cm.
Also, from the value ofl181m18 , we havel1m52m21,
which is of the same order as the values given before.

Figures 2 and 3 report our numerical results. The horiz
tal axis is the distance from the centerz08(t8) of the wave to
the leading edgez008 of the prosthesis, while the vertical ax
corresponds to the maximal amplitude of the wave. Figur
presents the effects of the amplitudea1 of the perturbation
f R,E on a0 as the wave propagates along the artery intera
ing with the prosthesis (z108 2z008 55 corresponds toz10

2z0050.615 cm). For the casea150, corresponding to the
artery without prosthesis~e.g., a healthy artery!, the ampli-
tude of the velocity wave decreases along the artery as m
tioned. Asa1 increases, the wave amplitude suffers imp
1-3
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tant modifications. As the wave approaches the leading e
of the prosthesis, its amplitude increases progressively
maximum at the center of the prosthesis. Then it decrea
abruptly before trying to recover the value that it would ha
had in the absence of the prosthesis. Instead, the prost
induces a loss of energy to small-amplitude reflected wa
generated at the leading edge of the prosthesis. This e
increases as eithera1 or a2 increases. An increase of th
length (z108 2z008 ) of the prosthesis amplifies the variation
the wave amplitude at the prosthesis site, implying that
prosthesis replaces an extended segment of the artery,
ture is more probable. If the differences between the pro
ties of the artery and a long prosthesis are large, we m
consider the interaction of the wave with the interfaces a
Sec. III.

First, we compare our results to existing data. Figure
and 3 are similar to those obtained in the literature. T
combined experimental and numerical study of Kimet al.
@16,17#, dealing with blood flow in the vicinity of an end-to
end anastomosis, found that because of the compliance
match between the prosthesis and the host artery, the
shear stress increases just proximal to the anastomosis
then decreases to a magnitude smaller than the normal
shear stress. Bauernschmittet al. @18# simulated arterial he-
modynamics after prosthetic replacement in various part
the artery tree. They concluded that the replacement
creases the pulse pressure and pulse velocity, which co
sponds to our findings, since the velocity wave is prop
tional to pressure wave~see the Appendix!. Stergiopulos
et al. @19# analyzed theoretically and fromin vitro experi-
ments the interaction of blood waves with an extended a
rial stenosis whose shape is similar to the prosthesis
sented in this paper. They found that hemodynamica
nonsevere and nondetectable stenoses induce wave r
tions and that the reflection coefficient increases with
severity of the stenosis. Our Figs. 2 and 3 showing ene
loss to reflected waves are compatible with these results e
though we treat a prosthesis instead of a stenosis. We
mention the similarity between our results and those
Anderssonet al. @20# and Tanget al. @21# on perturbations of
arterial stenoses on blood flow velocity, pressure, and s
stress.

III. REFLECTION AND TRANSMISSION AT THE
INTERFACES OF AN EXTENDED PROSTHESIS

When the extent of the prosthesis is large compared to
pulse wavelength, we cannot consider its effects as local
perturbations unless the parameters of the prosthesis
close to those of the artery~the case analyzed in Sec. II!.
Instead, we treat the situation in which an incoming wa
impinges on the first interface of the prosthesis. The tra
mitted part of the wave continues its motion in a new m
dium determined by the mechanical and geometrical cha
teristics of the prosthesis. Afterwards, the wave interacts w
the second interface of the prosthesis before entering
natural artery as in Fig. 1 with the prosthesis in region II. T
index i labels the characteristics and wave components
region i of the structure. For instance, the prosthesis
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Young’s modulusE2 , stress-strain nonlinear coefficienta2
~assumed equal toa!, wall thicknessh2 , and nondimensiona
wave componentsv28 , p28 , and s28 . Due to the prosthesis
multiple reflections and transmissions occur so that the w
in each part of the structure consists of various reflected
transmitted waves. We consider only the first interaction
the incident wave at each interface~the incident wave of
region II being the wave transmitted at the first interfac!,
assuming that the effects of secondary interactions are
ligible. Thus in regions I and II, we assume that we ha
only one incident wave and one reflected wave while in
gion III, we have only one transmitted wave.

We use the mathematical procedure of Duanet al. @10# for
the analysis of reflection and transmission at arterial bran
ings. In each regioni, we express the wave components
the form

pi85«pi11«2pi21¯ , n i85«n i11«2n i2 ,

si85si01«si11«2si2 . ~9!

Since in regions I and II, the wave consists of transmitted~or
incident! and reflected waves, we write

pi j 5pi j
t ~j,t!1pi j

R~h,t!, ~10!

where the new coordinateh is defined ash5«1/2(z81t8).
Similar expressions are valid forsi j andv i j . Inserting Eqs.
~9! and ~10! into the flow equations in each region, we fin
that the incident, reflected, and transmitted waves at diffe
interfaces separating regions I, II, and III are described
the following equations.

Region I:

]n11
i

]t
1S a11

2 D n11
i

]n11
i

]j
1

1

2

]3n11
i

]j3 50, ~11a!

]n11
R

]t
2S a11

2 D n11
R

]n11
R

]h
1

1

2

]3n11
R

]h3 50, ~11b!

with s11
i 5p11

i 5v11
i ands11

R 5p11
R 52v11

R .
Region II:

]n21
t

]t
1S a11

2 D n21
t

]n21
t

]j
1

1

2

]3n21
t

]j3 50, ~11c!

]n21
R

]t
2S a11

2 D n21
R

]n21
R

]h
1

1

2

]3n21
R

]h3 50, ~11d!

with s21
t 5p21

t 5n21
t ands21

R 5p21
R 52n21

R .
Region III:

]n31
t

]t
1S a11

2 D n31
t

]n31
t

]j
1

1

2

]3n31
t

]j3 50, ~11e!

with s31
t 5p31

t 5n31
t . The superscriptsi, R andt stand, respec-

tively, for the incident, reflected, and transmitted waves.
note that Eqs.~11! hold only at the interfaces. Far from th
interfaces, the waves obey an equation similar to Eq.~6!.
1-4
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FIG. 3. Effects of the extent of the prosthesis on the spatial variations of the amplitude of the arterial waves witha150.1.
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To obtain the reflection and transmission coefficients,
use at each interface the continuity of pressure and mas
derive the following.

At the first interface~region I to region II!,

E1h1

2R1
~p1

i 1p1
R!5

E2h2

2R2
p2

t ~12a!

and

~h1E1!1/2R1
3/2~n1

i 1n1
R!5~h2E2!1/2R2

3/2n2
t . ~12b!

At the second interface~region II to region III!,

E2h2

2R2
~p2

i 1p2
R!5

E3h3

2R3
p3

t ~12c!

and

~h2E2!1/2R2
3/2~n2

i 1n2
R!5~h3E3!1/2R3

3/2n3
t . ~12d!

From Eqs.~12a! and ~12b!, the transmitted and reflecte
pressures related the dimensional incident pressure by
following relations:

p2
t 5

2

11k1
p1

i , p1
R5

12k1

11k1
p1

i , ~13a!

with

k15S R2

R1
D 5/2S E1h1

E2h2
D 1/2

.

From Eqs.~12c! and~12d!, we can expressp3
t andp2

R first in
terms ofp2

t , then in terms ofp1
i to obtain
04191
e
to

he

p3
t 5

4

~11k1!~11k2!
p1

i ~13b!

and

p2
R5

12k2

11k2

2

11k1
p1

i , ~13c!

with

k25S R3

R2
D 5/2S E2h2

E3h3
D 1/2

.

From Eq. ~13!, we derive two important results for th
effects of prostheses on pressure waves. The first result
cerns the behavior of the reflection coefficient. The reflect
coefficients, which are the ratiosp1

R/p1
i and p2

R/p1
i , depend

on the arterial and prosthesis characteristics~radius, Young’s
modulus, and thickness!. Thus we can describe their beha
ior in terms of the mismatch between the artery and pros
sis. For instance, consider the situation at the entrance o
prosthesis and assume thath25h1 andR25R1 . The effects
of the prosthesis are thus due only to the relative value ofE2
compared toE1 . As E2 increases, the reflection coefficien
increases from 0 to 1. This behavior is also compatible w
the effects of the severity of an extended stenosis as obta
by Stergiopuloset al. @19#.

Our second and most interesting result is that, from
expressions forp1

R andp2
R , we derive the constraints on th

prosthesis and artery that eliminate reflections at the in
faces. Settingp1

R5p2
R50, we obtain the relations
1-5
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S R1

R2
D 5/2S E2h2

E1h1
D 1/2

51, ~14a!

and

S R2

R3
D 5/2S E3h3

E2h2
D 1/2

51. ~14b!

Equation~14! gives what we call the optimal shape for a
extended prosthesis that suppresses reflection of waves
interfaces. Since the mechanical properties~for instance,
Young’s modulusE2) of the prosthesis are difficult to adjus
we takeE2 as given and vary the geometrical characteris
R2 andh2 at the first interface to satisfy Eq.~14a! and at the
second interface according to Eq.~14b!. If we assume that
the characteristics of the arteries in regions I and II are
same~such as when the artery radius and modulus do
vary along the artery axis!, then Eqs.~14a! and ~14b! are
equivalent and the optimal thickness of the prosthesis is

h25S R2

R1
D 5 E1h1

E2
, ~15!

which is inversely proportional to Young’s modulus of th
prosthesis material. Assuming thatR25R1 , and using the
data given in Sec. II, we obtain that in the thoracic aorta,
optimal prosthesis thickness ish253.2943105/E2 cm,
while in the femoral artery,h252.5383105/E2 cm with the
prosthesis of Young’s modulusE2 ~which depends on the
polymeric material used! given in dyn/cm2.

However, if the characteristics of the artery vary along
axis, then the prosthesis should have a conical shape w
span agrees with both Eq.~14!. If the radiusR2 is chosen to
be equal toR1 at the entrance and toR3 at the exit of the
prosthesis, the ratioRa between the thicknesses at the e
trance and at the exit of the prosthesis should be

Ra5
11lzen

11lzou
, ~16!

where zen and zou are, respectively, the coordinates of t
entrance and exit of the prosthesis.

IV. CONCLUSION

This paper treats the interactions of blood waves w
prostheses. For short prostheses or prostheses with char
istics nearly equal to those of the host artery, the blood w
obeys a perturbed KdV equation. The numerical simulat
of this equation shows amplitude variation consisting of
increase just proximal to the prosthesis, followed by
abrupt decrease, and then an increase leading to an amp
smaller than the normal value of a healthy vessel. Our res
are qualitatively similar to those obtained from experimen
studies and other numerical simulations of blood flow in
teries with prostheses and stenoses. The main consequ
of the increase and decrease of the amplitude of each p
wave at the prosthesis is to induce abnormal stress on
arterial and prosthesis walls, one of the main causes of p
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thesis failure or rupture. An extended prosthesis scatters K
solitons into reflected and transmitted solitons at each in
face. The coefficients of reflection and transmission dep
on the mechanical and geometrical characteristics of
prosthesis and artery. We have derived the relation betw
the prosthesis and artery characteristics, which eliminates
reflections at both interfaces, thus defining an ideal pros
sis.

An interesting question, which remains unsolved, is
case of an abrupt change in arterial wall parameters. In
case, we could solve the generating Euler equations~1! ana-
lytically as in the study of the interactions of water wav
with variable channel bottoms@22,23# or numerically by the
generalized finite difference method introduced in Ref.@21#.
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APPENDIX

Let us rewrite the set of equations~1!,
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with g5
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2S0
.

The condition for the conservation of mass of the wall a
tissue~see Ref.@5#! leads to

R0h05Rh.

Then, using relations~3a! and ~3b!, we can write

R5R00~11pR!~11g!

and

E5E0~11pE!,

where

pR,E5«5/2FR,E~z!1« f R,E~z!.

Using the dimensionless quantities defined in Eqs.~5!, the
system~A1! becomes
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Inserting the scale transformationj5«1/2(z82t8) and t
5«3/2t8 into ~A2!, we obtain
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wherem185m8L0 andl185l8L0 .
We then introduce the perturbation expansions ofv8, p8

ands8 @see Eqs.~5!# in ~A3! and keeping only terms that are
respectively, proportional to« and«2, we obtain for«1 ,
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and for«2,
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Combining Eqs.~A4! we obtain

p15s15n1 .

From Eq.~A5c!, we have
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]2s1
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2 as1

21s1~ f E2l18t!1s2 .

Substituting this relation into Eqs.~A5a! and ~A5b! leads to
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This result implies

g11g250,

and finally, the equation,
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Settingk5 1
2 (a11), f 15 f R2m18t, f 25 f E1l18 , t, we ob-

tain
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which is Eq.~6! in the text.
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